Bias/Variance Tradeoff
Model Loss (Error)

- Squared loss of model on test case i:

 $\left(\text{Learn}(x_i, D) - \text{Truth}(x_i) \right)^2$

- Expected prediction error:

 $\left\langle \left(\text{Learn}(x, D) - \text{Truth}(x) \right)^2 \right\rangle_D$
Bias/Variance Decomposition

\[\langle (L(x,D) - T(x))^2 \rangle_D = Noise^2 + Bias^2 + Variance \]

Noe\(s^2 = \) lower bound on performance

Bias\(^2 = (\text{expected error due to model mismatch})^2\)

Variance = variation due to train sample and randomization
Bias2

- Low bias
 - linear regression applied to linear data
 - 2nd degree polynomial applied to quadratic data
 - ANN with many hidden units trained to completion

- High bias
 - constant function
 - linear regression applied to non-linear data
 - ANN with few hidden units applied to non-linear data
Variance

- **Low variance**
 - constant function
 - model independent of training data
 - model depends on stable measures of data
 - mean
 - median

- **High variance**
 - high degree polynomial
 - ANN with many hidden units trained to completion
Sources of Variance in Supervised Learning

- noise in targets or input attributes
- bias (model mismatch)
- training sample
- randomness in learning algorithm
 - neural net weight initialization
- randomized subsetting of train set:
 - cross validation, train and early stopping set
Bias/Variance Tradeoff

• \((\text{bias}^2 + \text{variance})\) is what counts for prediction

• Often:
 – low bias \(\Rightarrow\) high variance
 – low variance \(\Rightarrow\) high bias

• Tradeoff:
 – \(\text{bias}^2\) vs. variance
Bias/Variance Tradeoff

Bias/Variance Tradeoff

Hastie, Tibshirani, Friedman “Elements of Statistical Learning” 2001
Reduce Variance Without Increasing Bias

- Averaging reduces variance:

\[\text{Var}(\overline{X}) = \frac{\text{Var}(X)}{N} \]

- Average models to reduce model variance

- One problem:
 - only one train set
 - where do multiple models come from?
Bagging: Bootstrap Aggregation

- Leo Breiman (1994)
- Bootstrap Sample:
 - draw sample of size $|D|$ with replacement from D

Train $L_i(B_{sample_i}(D))$

Regression: $L_{bagging} = \overline{L_i}$

Classification: $L_{bagging} = Plurality(L_i)$
Bagging

• Best case:

\[
\text{Var}(\text{Bagging}(L(x,D))) = \frac{\text{Variance}(L(x,D))}{N}
\]

• In practice:
 – models are correlated, so reduction is smaller than 1/N
 – variance of models trained on fewer training cases usually somewhat larger
 – stable learning methods have low variance to begin with, so bagging may not help much
Bagging Results

<table>
<thead>
<tr>
<th>Data Set</th>
<th>\bar{e}_S</th>
<th>\bar{e}_B</th>
<th>Decrease</th>
</tr>
</thead>
<tbody>
<tr>
<td>waveform</td>
<td>29.0</td>
<td>19.4</td>
<td>33%</td>
</tr>
<tr>
<td>heart</td>
<td>10.0</td>
<td>5.3</td>
<td>47%</td>
</tr>
<tr>
<td>breast cancer</td>
<td>6.0</td>
<td>4.2</td>
<td>30%</td>
</tr>
<tr>
<td>ionosphere</td>
<td>11.2</td>
<td>8.6</td>
<td>23%</td>
</tr>
<tr>
<td>diabetes</td>
<td>23.4</td>
<td>18.8</td>
<td>20%</td>
</tr>
<tr>
<td>glass</td>
<td>32.0</td>
<td>24.9</td>
<td>22%</td>
</tr>
<tr>
<td>soybean</td>
<td>14.5</td>
<td>10.6</td>
<td>27%</td>
</tr>
</tbody>
</table>
How Many Bootstrap Samples?

Table 5.1
Bagged Missclassification Rates (%)

<table>
<thead>
<tr>
<th>No. Bootstrap Replicates</th>
<th>Missclassification Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>21.8</td>
</tr>
<tr>
<td>25</td>
<td>19.5</td>
</tr>
<tr>
<td>50</td>
<td>19.4</td>
</tr>
<tr>
<td>100</td>
<td>19.4</td>
</tr>
</tbody>
</table>
More bagging results
More bagging results
Bagging with cross validation

- Train neural networks using 4-fold CV
 - Train on 3 folds earlystop on the fourth
 - At the end you have 4 neural nets

- How to make predictions on new examples?
Bagging with cross validation

• Train neural networks using 4-fold CV
 – Train on 3 folds earlystop on the fourth
 – At the end you have 4 neural nets

• How to make predictions on new examples?
 – Train a neural network until the mean earlystopping point
 – Average the predictions from the four neural networks
Can Bagging Hurt?
Can Bagging Hurt?

• Each base classifier is trained on less data
 – Only about 63.2% of the data points are in any bootstrap sample

• However the final model has seen all the data
 – On average a point will be in >50% of the bootstrap samples
Reduce Bias\(^2\) and Decrease Variance?

- Bagging reduces variance by averaging
- Bagging has little effect on bias
- Can we average \textit{and} reduce bias?
- Yes:

 Boosting
Boosting

• Freund & Schapire:
 – theory for “weak learners” in late 80’s

• Weak Learner: performance on *any* train set is slightly better than chance prediction

• intended to answer a theoretical question, not as a practical way to improve learning

• tested in mid 90’s using not-so-weak learners

• works anyway!
Boosting

- Weight all training samples equally
- Train model on train set
- Compute error of model on train set
- Increase weights on train cases model gets wrong
- Train new model on re-weighted train set
- Re-compute errors on weighted train set
- Increase weights again on cases model gets wrong
- Repeat until tired (100+ iterations)
- Final model: weighted prediction of each model
Algorithm AdaBoost.M1
Input: sequence of m examples $\langle (x_1, y_1), \ldots, (x_m, y_m) \rangle$
 with labels $y_i \in Y = \{1, \ldots, k\}$
 weak learning algorithm WeakLearn
 integer T specifying number of iterations

Initialize $D_t(i) = 1/m$ for all i.
Do for $t = 1, 2, \ldots, T$:
 1. Call WeakLearn, providing it with the distribution D_t.
 2. Get back a hypothesis $h_t : X \rightarrow Y$.
 3. Calculate the error of h_t: $\epsilon_t = \sum_{i : h_t(x_i) \neq y_i} D_t(i)$.

 If $\epsilon_t > 1/2$, then set $T = t - 1$ and abort loop.
 4. Set $\beta_t = \epsilon_t / (1 - \epsilon_t)$.
 5. Update distribution D_t:
 \[D_{t+1}(i) = \frac{D_t(i)}{Z_t} \times \begin{cases}
 \beta_t & \text{if } h_t(x_i) = y_i \\
 1 & \text{otherwise}
 \end{cases} \]

 where Z_t is a normalization constant (chosen so that D_{t+1}
 will be a distribution).

Output the final hypothesis:
\[
 h_{fin}(x) = \arg \max_{y \in Y} \sum_{t : h_t(x) = y} \log \frac{1}{\beta_t}.
\]
Boosting: Initialization

Algorithm AdaBoost.M1

Input: sequence of m examples $\langle (x_1, y_1), \ldots, (x_m, y_m) \rangle$
with labels $y_i \in Y = \{1, \ldots, k\}$
weak learning algorithm **WeakLearn**
integer T specifying number of iterations

Initialize $D_1(i) = 1/m$ for all i.
Boosting: Iteration

Do for \(t = 1, 2, \ldots, T: \)

1. Call \textbf{WeakLearn}, providing it with the distribution \(D_t. \)
2. Get back a hypothesis \(h_t : X \rightarrow Y. \)
3. Calculate the error of \(h_t: \quad \epsilon_t = \sum_{i: h_t(x_i) \neq y_i} D_t(i). \)

 If \(\epsilon_t > 1/2, \) then set \(T = t - 1 \) and abort loop.
4. Set \(\beta_t = \epsilon_t / (1 - \epsilon_t). \)
5. Update distribution \(D_t: \)

\[
D_{t+1}(i) = \frac{D_t(i)}{Z_t} \times \begin{cases}
\beta_t & \text{if } h_t(x_i) = y_i \\
1 & \text{otherwise}
\end{cases}
\]

where \(Z_t \) is a normalization constant (chosen so that \(D_{t+1} \) will be a distribution).
Boosting: Prediction

Output the final hypothesis:

\[h_{\text{fin}}(x) = \arg \max_{y \in Y} \sum_{t : h_t(x) = y} \log \frac{1}{\beta_t}. \]
Weight updates

• Weights for incorrect instances are multiplied by \(1/(2\text{Error}_i)\)
 - Small train set errors cause weights to grow by several orders of magnitude

• Total weight of misclassified examples is 0.5

• Total weight of correctly classified examples is 0.5
Reweighting vs Resampling

- Example weights might be harder to deal with
 - Some learning methods can’t use weights on examples
 - Many common packages don’t support weighs on the train
- We can resample instead:
 - Draw a bootstrap sample from the data with the probability of drawing each example is proportional to it’s weight
- Reweightining usually works better but resampling is easier to implement
Boosting Performance
Boosting vs. Bagging

• Bagging doesn’t work so well with stable models. Boosting might still help.

• Boosting might hurt performance on noisy datasets. Bagging doesn’t have this problem.

• In practice bagging almost always helps.
Boosting vs. Bagging

• On average, boosting helps more than bagging, but it is also more common for boosting to hurt performance.

• The weights grow exponentially.

• Bagging is easier to parallelize.